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Abstract. Under certain circumstances, an industrial hopper which operates under the “funnel-flow” regime can
be converted to the “mass-flow” regime with the addition of a flow-corrective insert. This paper is concerned
with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the
cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb–Mohr yield condition
together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as
such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturba-
tion approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric
flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is com-
pared with numerical solutions to the governing equations, and is shown to work very well for angles of internal
friction in excess of 45◦.
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1. Introduction

Granular materials are used extensively throughout the world in most industrial processes,
where these materials are stored in hoppers (or silos), which are large containers designed
to provide easy retrieval. Disruptions to the flow of the material from a hopper often arise
due to phenomena such as arching (see [1] for a thorough review) and rat-holing (see [2–4]).
For both phenomena the underlying mechanisms of initiation and formation are not properly
understood, and to gain a better understanding of these situations, improved models are nec-
essary. The ability to accurately predict the flow distribution of material from a hopper is of
great importance, especially when disruptions to flow reduce the productivity and profitability
of the industrial process concerned. Ideally, hoppers should be designed to operate in a pre-
scribed manner, giving reliable flow-rates, which in turn leads to an increase in both the profit
and viability of the industrial process.

In general, the desired flow pattern in an industrial hopper is where the entire material in
the hopper is simultaneously in motion, commonly referred to as “mass-flow”. Conversely, an
undesired flow pattern is where flow occurs only in a central region that is surrounded by a
stagnant region, and is referred to as “funnel-flow”. Parameters that contribute to whether the
flow pattern is mass-flow or funnel-flow include the slope and smoothness of the walls and the
cohesiveness and the inter-particle friction of the material. As such, studying the flow behav-
iour for varying parameters should lead to a deeper understanding of hopper flow of granular
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materials, enabling improved predictions as to whether a particular hopper with a particular
material will give rise to mass-flow or funnel-flow.

One of the methods of converting a funnel-flow hopper into a mass-flow hopper is to use
an insert (for experimental studies, see: [5–8]; and for numerical simulations, see: [9,10]). An
insert is an apparatus (usually metal), which is fastened at a fixed position in a silo or hop-
per, in order to influence the flow of granular material in such a way as to prohibit the for-
mation of funnel-flow. The three most common types of inserts are “cone-in-cone”, “inverted
cone” and “double cone”, as shown in Figure 1. Here we are primarily interested in inves-
tigating the effect of the cone-in-cone inserts [5,9,10]. As described by Dantoin et al. [11],
funnel-flow hoppers can cause serious problems to industrial processes. In [11], a situation is
described where due to the build-up of stagnant material in a coal funnel-flow bunker at a
power plant, an explosion occurred that caused in excess of $US 4 million in damages and
loss production. Further, after the event, another $US 1·2 millon was spent in upgrading the
funnel-flow bunker to a mass-flow bunker. Accordingly, any improvement in our understand-
ing of the flow patterns of hoppers with inserts has the potential to provide the particulate
industries with a much cheaper option in regard to converting a funnel-flow hopper into a
mass-flow hopper.

Gravity flow of granular material from a hopper has been studied extensively throughout
the literature, with a review of some developments given in [12], and some more recent studies
in [13,14], for example. Early progress for this problem was made in [15–18], where the so-
called “radial stress field” solutions are studied for quasi-static flow of incompressible materi-
als which obey the Coulomb–Mohr yield condition. These solutions are similarity solutions,
and are valid in the neighbourhood of the hopper outlet. In this case the equilibrium equa-
tions and the Coulomb–Mohr yield condition reduce to two highly non-linear coupled ordi-
nary differential equations, which in general can only be solved numerically. Recently, some
exact parametric solutions to these equations have been determined by Cox and Hill [19] and
Hill and Cox [20] for the limiting case of sinφ= 1, where φ is the angle of internal friction
of the material. Furthermore, these exact solutions have been recently used by Thamwattana
and Hill [21] as leading order terms in a regular perturbation valid for 1 − sinφ� 1. There
do exist granular materials that possess angles of internal friction around 60 to 65◦, as sup-
ported by the experimental data given in [22, p. 23], [23–25]. Such materials give rise to values
of sinφ around 0·87 to 0·91, and we refer to materials with 1− sinφ�1 as being “highly fric-
tional”. Of course, we must be cautious when studying high-friction granular materials, as the
physics involved in taking the limit φ→π/2 is not well-understood (and could be the subject
of experimental investigations). However, in the present study, as with [21], we are interested
in deriving solutions for 1 − sinφ small but finite, so the question of the validity of setting
φ=π/2 is not relevant here.
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Figure 1. Schematic diagram of conical hopper with a cone-in-cone insert (a), an inverted cone insert (b), and a
double-cone insert (c).
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The use of the Coulomb–Mohr yield condition to predict stress fields in quasi-static gran-
ular flows is quite widely accepted, and produces results that are well in accord with experi-
mental data. However, the correct formulation of the accompanying velocity equations is still
controversial. To accompany the radial stress fields described above, [15,17] use the coaxial
flow rule to describe the velocity fields. This approach assumes the principal axes of stress
and strain-rate coincide. An alternate flow rule comes from the double-shearing theory, orig-
inally proposed by Spencer [26,27]. In this theory, every deformation is assumed to consist
of simultaneous shears along the two families of stress lines, and (for quasi-static flow) the
characteristic curves for the stresses and velocities coincide. For the flow of material near the
outlet of a hopper, [28,29] show the coaxial theory used in [15,17] yields physically unaccept-
able predictions in the velocity field, whereas the double-shearing theory predicts results which
are certainly reasonable. Further, [30] compares the double-shearing theory with experimental
results for this problem, and the agreement is excellent. Exact velocity fields for the limiting
case of φ=π/2 have been calculated in [31] using the double-shearing theory. These solutions
have yet to be employed as leading-order terms in a perturbation series, and this is one of
the goals of the present study.

In this paper, we consider the two-dimensional problems of quasi-static granular flow
through asymmetrical wedge hoppers and hoppers with wedge-in-wedge inserts, as well as the
axially symmetric problem of flow through conical hoppers with cone-in-cone inserts. In the
following section we formulate the governing ordinary differential equations which apply near
the outlet of the hoppers, and derive the appropriate boundary conditions in each case. In
Sections 3 and 4 we attack the problems by considering a regular perturbation series, follow-
ing [21], by assuming that the quantity 1− sinφ�1, remembering that φ is the angle of inter-
nal friction. The first two terms of the expansion are found parametrically, and it is shown
that these analytic results provide excellent approximations to the exact numerical solutions
for values of φ in excess of 45◦, particularly for steep hoppers, and the necessary physical con-
dition of the rate of work being non-negative is examined in Section 5. Finally, in Section 6
we make some concluding remarks.

2. Mathematical formulation

In this section we briefly state the governing equations for steady quasi-static granular flow
through two-dimensional and axially symmetric hoppers under gravity. In two-dimensions,
boundary conditions are given for hoppers whose walls have unequal slopes, a situation which
includes the case of a wedge-in-wedge insert. For axially symmetric flows, boundary condi-
tions are given for the case in which there is a cone-in-cone insert.

2.1. Governing equations in two-dimensions

We consider here steady flow of a granular material in two dimensions, and use cylindrical
polar coordinates (r, θ) as defined by Figures 2(a) and (b). By assuming the flow is quasi-
static, the inertia terms in the momentum equations may be neglected, so that the compo-
nents of the Cauchy stress tensor σrr , σθθ and σrθ satisfy the equilibrium equations

∂σrr

∂r
+ 1
r

∂σrθ

∂θ
+ σrr −σθθ

r
=ρg sin θ,

∂σrθ

∂r
+ 1
r

∂σθθ

∂θ
+ 2σrθ

r
=ρg cos θ, (2.1)

where ρ is the bulk density and g is acceleration due to gravity. In this study the material is
taken to be incompressible, so that the density ρ is constant. We note the stress components
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Figure 2. Coordinate system for a two-dimensional asymmetrical wedge hopper (a), and a two-dimensional hopper
with a wedge-in-wedge insert (b).

are assumed to be positive in tension, so that a positive force will produce a positive exten-
sion.

To close the system of equations, we assume the material yields according to the Cou-
lomb–Mohr yield condition. Thus, for every surface through an arbitrary point within the
material, the magnitude of the tangential component of the traction vector τn is bounded by
the critical value

|τn|≤ c−σn tanφ, (2.2)

where σn is the normal component of tensive traction on the surface. Here, c≥0 denotes the
cohesion of the material, while 0≤φ≤π/2 is the angle of internal friction, both assumed con-
stant. We note if equality holds in (2.2), then the material yields at that point along the par-
ticular surface whose tangential and normal components of traction are given by τn and σn,
respectively.

Now, to utilize the above equations, we introduce the stress angle ψ defined by

tan 2ψ= 2σrθ
σrr −σθθ , (2.3)

where physically ψ corresponds to the angle between the direction corresponding to the max-
imum principal stress and the r-axis, in the direction of increasing θ . Next, upon introducing
the generally positive stress invariants p and q defined by

p=−1
2
(σI +σIII )=−1

2
(σrr +σθθ ), q= 1

2
(σI −σIII )= 1

2

{
(σrr −σθθ )2 +4σ 2

rθ

}1/2
, (2.4)

the usual stress decomposition arises

σrr =−p+q cos 2ψ, σθθ =−p−q cos 2ψ, σrθ =q sin 2ψ, (2.5)

where σI and σIII denote the maximum and minimum principal stresses respectively, and
physically speaking, p represents an average pressure, while q is the maximum magnitude of
the shear stress. This stress decomposition enables the equilibrium equations to be expressed
in terms of an equivalent formulation using p, q and ψ .

To express the Coulomb–Mohr yield condition using these three variables, we note that
for an arbitrary surface whose unit normal n makes an angle of δ with the positive x-axis,
the normal tensive component and the magnitude of the tangential component of traction are
given by

σn=−p+q cos 2(δ−ψ), |τn|=q| sin 2(δ−ψ)|. (2.6)
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As the quantity |τn|+σn tanφ attains its maximum possible value when

δ=ψ±
(
π

4
− φ

2

)
, (2.7)

then from (2.2), yield only occurs along surfaces whose normal n makes an angle of δ given
by (2.7). Further, we denote the normal tensive component and the magnitude of the tangen-
tial component of traction of such surfaces by σ and τ , respectively, so that from (2.6) and
(2.7) we find

σ =−p+q sinφ, τ =q cosφ. (2.8)

As a result, for yielding material, we can express the Coulomb–Mohr yield condition in the
more useful form of

q=p sinφ+ c cosφ. (2.9)

Now, [16,17] show that a radial stress field solution is a reasonable approximation for the
stress distribution near the outlet of a hopper. This involves a radial wedge field solution of
the form

ψ=ψ(θ), q=ρgrF (θ), (2.10)

so from (2.5) and (2.9) we find that the equilibrium Equations (2.1) give rise to two non-lin-
ear coupled ordinary differential equations, namely

dF
dθ

= F sin 2ψ−β cos(θ +2ψ)
β+ cos 2ψ

, 1+ dψ
dθ

= F(β−1 −β)+ sin θ +β sin(θ +2ψ)
2F(β+ cos 2ψ)

, (2.11)

where here and throughout the paper we use the notation β= sinφ. We can eliminate F from
the governing Equations (2.11), and deduce the single second-order ordinary differential equa-
tion for ψ(θ)

(β+ cos 2ψ)[sin θ +β sin(θ +2ψ)]ψ ′′ =2(1+ψ ′){sin 2ψ [sin θ +β sin(θ +2ψ)]ψ ′ +
+2β cos(θ +2ψ)(β+ cos 2ψ)ψ ′ + (3β2 +2β cos 2ψ−1) cos(θ +2ψ)}, (2.12)

where the primes denote differentiation with respect to θ . With ψ determined, the function F
can be recovered from

F = β[sin θ +β sin(θ +2ψ)]
2β(β+ cos 2ψ)(1+ψ ′)+β2 −1

. (2.13)

As mentioned in the Introduction, the above equations are generally accepted as a reason-
able basis for the determination of the plane-strain stress field for gravity flow from a hopper;
however, the prescription of the governing equations for the determination of the velocity field
is not as readily agreed upon. In this study we assume the velocity profile is governed by the
non-dilatant double-shearing theory derived by Spencer [26,27], which is based on the idea
that deformation arises as a result of shear along the surfaces defined by (2.7) on which the
critical shear stress is mobilized, and which coincide with the slip-lines in quasi-static flows.
In particular, if vr(r, θ) and vθ (r, θ) are the components of velocity in the r and θ , directions,
respectively, then the double-shearing theory provides that they satisfy the following equations

∂vr

∂r
+ 1
r

∂vθ

∂θ
+ vr

r
=0,

(
∂vθ

∂r
+ 1
r

∂vr

∂θ
− vθ

r

)
cos 2ψ−

(
∂vr

∂r
− 1
r

∂vθ

∂θ
− vr

r

)
sin 2ψ=β

(
∂vθ

∂r
− 1
r

∂vr

∂θ
− vθ

r
−2�

)
,

(2.14)
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where the quantity � is defined to be

�=vr ∂ψ
∂r

+ vθ

r

∂ψ

∂θ
. (2.15)

Following [15], for hopper flow we assume the particular velocity profile

vr(r, θ)= u(θ)

r
, vθ (r, θ)=0, (2.16)

which ensures that flow can only occur in the radial direction, and (2.14)1 is automatically
satisfied. In this case, recalling that ψ=ψ(θ), then (2.14)2 becomes simply

du
dθ
(β+ cos 2ψ)=−2u sin 2ψ, (2.17)

which implies that

u= ū exp
{

2
∫ θc

θ

sin 2ψ
β+ cos 2ψ

dθ
}
, (2.18)

for some constants θc and ū such that ū= u(θc). We note that ū is the arbitrary constant
of integration arising from solving (2.17), while θc is a constant that has been introduced
to ensure that u/ū= 1 at some specific angle θ = θc (which is done in order to facilitate the
comparison of the perturbation solution with a numerical solution). In particular, we choose
θc = π/2 for the asymmetrical wedge hopper, and θc = γ2 for the hopper with a wedge-in-
wedge insert.

2.2. Boundary conditions for two-dimensional flow

In this subsection we specify appropriate boundary conditions for the problems of flow in an
asymmetrical wedge hopper and flow in a hopper with a wedge-in-wedge insert, as shown in
Figure 2(a) and (b). For the latter problem we need only consider half of the hopper, since
the flow field is symmetric. The two mathematical problems are essentially the same, with the
exception being the physical range of values of γ1 and γ2. In particular, for the asymmetrical
wedge hopper we have 0<γ1<π/2<γ2<π , while for the hopper with an insert we instead
have 0<γ1<γ2<π/2 (with the other half of the flow given by reflection). We note that the
problem of an asymmetrical wedge hopper is in some respects similar to the non-axially sym-
metric hopper flows considered recently in [14].

In all the problems we are considering in this study, it is assumed that the cohesion is zero
(c= 0), and as the material flows along the sidewalls of the hopper and the sidewalls of the
insert, it is reasonable that a Coulomb friction condition should apply along these walls. In
this case, upon examining the geometry of the problems as depicted in Figure 2, we find that
the two-dimensional Cauchy stress components must satisfy the boundary conditions

σrθ =σθθ tanµ1 at θ =γ1, σrθ =−σθθ tanµ2 at θ =γ2, (2.19)

where µ1 and µ2 denote the angles of wall friction of the sidewall of the hopper along θ=γ1

and θ=γ2, respectively. Thus, from (2.5) and (2.9) we find for a cohesionless material that the
two-dimensional boundary conditions (2.19) become

sin[µ1 +2ψ(γ1)]=− sinµ1

sinφ
at θ =γ1, sin[µ2 −2ψ(γ2)]=− sinµ2

sinφ
at θ =γ2, (2.20)

which are valid provided µ1 <φ and µ2 <φ. If the material is such that µ1 ≥ φ or µ2 ≥ φ,
then the material will slip on itself at the wall, and here the wall is referred to as being “per-
fectly rough”. We do not consider this case in the present study. We note that if we assume
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the cohesion is non-zero, then the Coulomb friction conditions cannot be satisfied (unless φ=
π/2), as detailed in [32].

In summary, the problem of computing the stress and velocity fields near the outlet of
a two-dimensional asymmetrical wedge hopper reduces to solving the non-linear ordinary
differential equation (2.12) subject to the boundary conditions (2.20), with F(θ) and u(θ)

then given by (2.13) and (2.18), respectively. In general, this can only be achieved by solving
(2.12) numerically, with a finite-element scheme, for example. However for large values of
the angle of internal friction φ we seek analytic progress in Section 3 using perturbation
analysis.

2.3. Governing equations with axial symmetry

For axially symmetric flows through conical hoppers it is appropriate to use spherical coordi-
nates (R,,�), as defined by Figure 3. In this case the four independent components of the
stress tensor, denoted by σRR,σ,σ�� and σR, are independent of the variable �. We will
employ the usual stress decomposition

σRR =−P +Q cos 2�, σ=−P −Q cos 2�, σR=Q sin 2�, (2.21)

where P and Q are the stress invariants given by

P=−1
2
(σI+σIII )=−1

2
(σRR+σ), Q=1

2
(σI−σIII )=1

2

{
(σRR−σ)2+4σ 2

R

}1/2
, (2.22)

with σI and σIII denoting the maximum and minimum principal stresses, respectively. Fur-
ther, � is the stress angle defined by

tan 2�= 2σR
σRR −σ , (2.23)

where physically � corresponds to the angle between the direction corresponding to the
maximum principal stress and the R-axis, in the direction of increasing .
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Figure 3. Coordinate system for a three-dimensional hopper with a cone-in-cone insert.
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For quasi-static flow, the stress components satisfy the equilibrium equations

∂σRR

∂R
+ 1
R

∂σR

∂
+ 2σRR −σ−σ��

R
+ σR

R
cot=ρg cos,

∂σR

∂R
+ 1
R

∂σ

∂
+ σ−σ��

R
cot+ 3σR

R
=−ρg sin,

(2.24)

which can be rewritten in terms P , Q, � and σ��, but we leave out the details here. In addi-
tion, we have the Coulomb–Mohr yield condition (2.2), which is written in terms of P and
Q as

Q=P sinφ+ c cosφ. (2.25)

We therefore have three Equations (2.24) and (2.25) to describe the stress field, with the four
unknowns P , Q, � (or σRR, σ, σR) and σ��.

To close the system of equations we need to make an assumption about the hoop stress, in
order to determine an expression for σ�� in terms of P,Q and �. It has been stated in [33]
that the plastic regimes which agree with the Haar-von Kármán hypothesis will give rise to
solutions that are most likely to be of the greatest significance to axially symmetric problems
of interest. In particular, the heuristic Haar-von Kármán principle states that under an axially
symmetric condition the hoop stress is equal to either the maximum or minimum principal
stress. This condition gives rise to the idea of Haar-von Kármán regimes, and in particular,
either σI =σ��=σII >σIII or σI >σII =σ��=σIII , where σII denotes the intermediate prin-
cipal stress, and in both cases the hoop stress σ�� is assumed to be a principal stress. Here,
we choose the former, from which we may deduce

σ��=−P +Q. (2.26)

We note that this choice differs from the traditional view (see [15,16,28]), in which more phys-
ically realistic results for the converging conical hopper problem are believed to be produced
by choosing σ��=σIII , leading to

σ��=−P −Q, (2.27)

while (2.26) is believed as being more applicable for diverging flow. However, with (2.27) we
have been unable to determine an exact parametric solution for the limiting case of φ=π/2,
and as such, analytic progress with a perturbation scheme for 1− sinφ�1 has not been pos-
sible. We therefore adopt (2.26) and we keep in mind that the results obtained may not be as
physically applicable as those obtained when σ�� is given by (2.27).

Now, following [15–17], we assume a stress field solution of the form

�=�(), Q=ρgRG(), (2.28)

so from (2.21), (2.25) and (2.26) we find that the equilibrium Equations (2.24) give rise to two
non-linear coupled ordinary equations, namely

dG
dθ

= 2G cos�{sin�−βcosec cos(+�)}+β sin(+2�)
β+ cos 2�

,

1+d�
d

= G(1−β){β−1(1+2β)−cosec sin(+2�)}+cos+β cos(+2�)
2G(β+ cos 2�)

,

(2.29)

where again we adopt the notation β= sinφ. We can eliminate G from the governing Equa-
tions (2.29), and deduce the single second-order ordinary differential equation for �()
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2(β+ cos 2�)[cos+β cos(+2�)]� ′′

=2(1+� ′)
{

cosec
[
β(β+ cos 2�)[1+ cos{2(+�)}]−

−[cos+β cos(+2�)][2 sin sin 2�+ (1−β) cos(+2�)]+
+2(1−β) sin(+2�)[(1+2β) sin−β sin(+2�)]

]
+

+2(1+� ′)
[

sin 2�[cos+β cos(+2�)]−2β sin(+2�)(β+ cos 2�)
] }

+
+(1−β)cosec2

{
sin{2(+�)}[cos+β cos(+2�)]−

−[1+ cos{2(+�)}][(1+2β) sin−β sin(+2�)]
}
, (2.30)

where prime denotes differentiation with respect to . With � determined, the function G

can be recovered from

G= β[cos+β cos(+2�)]
2β(β+ cos 2�)(1+� ′)− (1−β)[1+2β−βcosec sin(+2�)]

. (2.31)

We note the choice of the Haar-von Kármán regime (2.27) leads to a system of coupled non-
linear ordinary differential equations analogous to (2.29), where the only differences involve
sign changes (see [19] for full details). For this case, [34] identify a simple exact solution that
provides an envelope for solutions in (�,) space for the problem of converging flow through
a conical hopper without an insert. This envelope can be very useful, as it provides a bound
for the hopper angle. If the hopper angle is larger than that given by the envelope curve, then
the material must be in funnel-flow. Unfortunately, for the choice of (2.26), the correspond-
ing exact solution (see Equation (2.29) in [19]) does not take real values, and hence cannot
be used as an envelope curve. We therefore do not have a simple criterion for mass-flow when
adopting (2.26).

Now, upon assuming the velocity profile is governed by the non-dilatant double-shearing
theory, and if VR(R,) and V(R,) are the components of velocity in the R and  direc-
tions respectively, we obtain

∂VR

∂R
+ 1
R

∂V

∂
+ 2VR

R
+ V

R
cot=0,

(
∂V

∂R
+ 1
R

∂VR

∂
−V
R

)
cos 2�−

(
∂VR

∂R
− 1
R

∂V

∂
−VR
R

)
sin 2�=β

(
∂V

∂R
− 1
R

∂VR

∂
−V
R

−2�
)
,

(2.32)

where the quantity � is defined to be

�=VR ∂�
∂R

+ V

R

∂�

∂
. (2.33)

Following [15], we assume the velocity profile

VR(R,)= U()

R2
, V(R,)=0, (2.34)

which ensures that flow can only occur in the radial direction and (2.32)1 is automatically
satisfied. In this case, recalling that �=�(), then (2.32)2 becomes simply

dU
d

(β+ cos 2�)=−3U sin 2�, (2.35)

which implies that

U = Ū exp
{
−3

∫ 

c

sin 2�
β+ cos 2�

d
}
, (2.36)
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for some constants c and Ū such that Ū =U(c). We note that Ū is the arbitrary constant
of integration arising from solving (2.35), while c is a known constant that has been intro-
duced to ensure that U/Ū =1 at some specific angle =c. In particular, we choose c=α2

for the hopper with a cone-in-cone insert.

2.4. Boundary conditions for axially symmetric flow

In this subsection we specify appropriate boundary conditions for the problem of flow in a
hopper with a cone-in-cone insert, as shown in Figure 3. We note that the physical range of
values of α1 and α2 must satisfy 0<α2<α1<π/2.

As with the two-dimensional problem, we assume that the cohesion is zero (c= 0), and
that a Coulomb friction condition applies along the hopper walls. It follows from the prob-
lem geometry (see Figure 3) that the axially symmetric Cauchy stress components must satisfy

σR=−σ tanµ1 at =α1, σR=σ tanµ2 at =α2, (2.37)

where µ1 and µ2 denote the angles of wall friction of the sidewall of the hopper along =α1

and =α2, respectively. Thus, from (2.21) and (2.25) we find for a cohesionless material that
the axially symmetric boundary conditions (2.37) become

sin[µ1 −2�(α1)]=− sinµ1

sinφ
at =α1, sin[µ2 +2�(α2)]=− sinµ2

sinφ
at =α2, (2.38)

which are valid provided µ1<φ and µ2<φ. As with the two-dimensional case, we mention
that, if either µ1 ≥φ or µ2 ≥φ, then the material will slip on itself at the appropriate wall, the
wall being referred to as “perfectly rough”. Since we are primarily concerned with materials
with high angles of internal friction, we do not consider this case here.

In summary, the problem for computing the stress and velocity fields near the outlet of an
axially symmetric hopper with a cone-in-cone insert reduces to solving the non-linear ordi-
nary differential equation (2.30) subject to the boundary conditions (2.38), with G() and
U() then given by (2.31) and (2.36), respectively. In general, this can only be achieved by
solving (2.30) numerically, however, in Section 4 we derive analytic solutions via a perturba-
tion scheme valid when the quantity 1− sinφ�1.

3. Highly frictional limit in two-dimensions

In this section we seek analytic solutions to the two-dimensional problems formulated in Sec-
tion 2 by considering the asymptotic limit φ→π/2. For φ=π/2 there has been a great deal
of success recently in deriving exact solutions for gravity-driven quasi-static flow (see [35], for
example), and for the particular case of the similarity solutions described by (2.10) and (2.16),
these solutions have been used as leading-order terms in perturbation series for 1 − sinφ� 1
in [21]. Here we extend this analysis to hold for asymmetrical wedge hoppers and hoppers
with wedge-in-wedge inserts.

3.1. Perturbation analysis

We analyse the governing Equations (2.12), (2.13) and (2.18) by writing out the solutions in
the form

ψ=ψ0(θ)+ εψ1(θ)+O(ε2), F =F0(θ)+ εF1(θ)+O(ε2), u=u0(θ)+ εu1(θ)+O(ε2), (3.1)
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where ε=1−β=1− sinφ and ε�1. To leading order we find that ψ0 satisfies the non-linear
ordinary differential equation

ψ ′′
0 =2(1+ψ ′

0)
{
cot(θ +ψ0)(1+ψ ′

0)− tanψ0
}
, (3.2)

and F0 and u0 are given in terms of ψ0 by

F0 = sin(θ +ψ0)

2(1+ψ ′
0) cosψ0

, u0 = ū exp
{

2
∫ θc

θ

tanψ0 dθ
}
. (3.3)

The leading-order terms ψ0, F0 and u0 are evidently the solutions for the ideal limit φ=π/2.
These equations were first solved by Hill and Cox [20], and the solution procedure is briefly
described here. We make the transformation

h(ξ)= cot(θ +ψ0), ξ = tan θ, (3.4)

and (3.2) becomes

(h+ ξ)h′′ +2h′ =0, (3.5)

where the primes here indicate derivatives with respect to ξ . This equation can be solved by
introducing the substitutions ν(ξ)=h+ ξ , ω(ν)= 1 − ν′(ξ), for some intermediate variable ν,
the result being that the solution is given parametrically by

h= cot(θ +ψ0)= I (ω)

C2
, ξ = tan θ = 2ω−1/2eω/2 − I (ω)

C2
, (3.6)

where ω acts as a parameter, I (ω) is the integral defined by

I (ω)=
∫ ω

0
t−1/2et/2dt+C1, (3.7)

and C1 and C2 are arbitrary constants. It follows that the solutions for F0 and u0 are given
parametrically by

F0 = 1
4

ω−1/2e−ω/2[C2
2 + I 2(ω)]

{
C2

2 + [2ω−1/2eω/2 − I (ω)]2}1/2
, u0 = ū ω

{
C2

2 + [2ω−1/2eω/2 − I (ω)]2}

ωc

{
C2

2 + [2ω−1/2
c eωc/2 − I (ωc)]2

} , (3.8)

where the parameter value ω=ωc corresponds to θ= θc.
The correction term for the stress angle ψ1 is found to satisfy the linear equation

ψ ′′
1 =2ψ ′

1

{
2(ψ ′

0 +1) cot(θ +ψ0)− tanψ0
}+ψ1{ψ ′′

0 [3 tanψ0 − cot(θ +ψ0)]−
−2(ψ ′

0 +1)2[1+3 tanψ0 cot(θ +ψ0)]+2(ψ ′
0 +1)[2 tan2ψ0 − tanψ0 cot(θ +ψ0)−1]}+

+(ψ ′
0+1)2[tanψ0cosec2(θ+ψ0)+sec2ψ0(tanψ0−cot(θ+ψ0)]−(ψ ′

0+1) sec2ψ0 cot(θ+ψ0),

(3.9)
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where ψ0 is given by the leading-order solution (3.6). The method for solving this ordinary
differential equation is presented in Appendix A, along with the analysis for determining F1

and u1. The result is that the correction terms are given by

ψ1 = 1

C2
2 + I 2(ω)

{
C4(1−ω)+ 1

4 [2ω1/2eω/2 + (1−ω)I (ω)]
[∫ ω

0
(1− t)K(t)dt+C3

]
−

− 1
4 (1−ω)

∫ ω

0
[2t1/2et/2 + (1− t)I (t)]K(t)dt

}
,

F1 =F0
ω1/2e−ω/2

8C2
2

[C2
2 + I 2(ω)]

{
8C2

dψ1

dω
+4C2ψ1 + (1+ω)ω−1/2e−ω/2[C2

2 + I 2(ω)]− (3.10)

−6I (ω)+ 8ω−1/2eω/2I 2(ω)

C2
2 + I 2(ω)

}
,

u1 = u0

8C2
2

{
e−ωc [C2

2 + I 2(ωc)]2 − e−ω[C2
2 + I 2(ω)]2

+2
∫ ω

ωc

t−1/2e−t/2[C2
2 + I 2(t)][2C2ψ1 + I (t)]dt

}
,

where C3 and C4 are constants of integration, F0 given by (3.8)1, u0 given by (3.8)2, and the
function K given by the expression

K(ω)=− 1
2C2

ω−1/2e−ω/2I (ω)[C2
2 + I 2(ω)]− 2

C2
ω−1/2eω/2[2ω−1/2eω/2 − I (ω)]+

+ 1
4C2

ωe−ω[C2
2 + (2ω−1/2eω/2 − I (ω))2]2. (3.11)

3.2. Application of boundary conditions

By substituting the perturbation series (3.1)1 in the boundary conditions (2.20), we find that

ψ0 =−µ1, ψ1 =− 1
2 tanµ1 on θ =γ1,

ψ0 =µ2, ψ1 = 1
2 tanµ2 on θ =γ2. (3.12)

In this subsection we use these conditions to determine the values of the constants C1 and
C2 in the leading-order solution ψ0 given by (3.6)–(3.7), and the constants C3 and C4 in the
correction term ψ1 in (3.10)1. Throughout this section we will use the integral

J (ω)=
∫ ω

0
t−1/2et/2 dt, (3.13)

so that from (3.7) we have I (ω)=J (ω)+C1.

3.2.1. Wedge-in-wedge insert
For the case of a wedge-in-wedge insert (see Figure 2) we need only consider the domain γ1 ≤
θ ≤ γ2, since the flow is symmetric about θ =π/2. We suppose that the parameter ω in (3.6)
takes the values ω=ω1 and ω=ω2 at θ=γ1 and θ=γ2, respectively. By applying the boundary
conditions (3.12)1 and (3.12)3, we find the constants C1 and C2 are given in terms of these
parameter values by

C1 =C2 cot(γ2 +µ2)−J (ω2), C2 = 2ω−1/2
1 eω1/2 −J (ω1)+J (ω2)

tan γ1 + cot(γ2 +µ2)
,
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while the values of ω1 and ω2 are determined by the pair of transcendental equations

1
2ω

1/2
1 e−ω1/2[J (ω1)−J (ω2)]= cot(γ1 −µ1)− cot(γ2 +µ2)

tan γ1 + cot(γ1 −µ1)
,

(
ω2

ω1

)1/2

e(ω1−ω2)/2 = tan γ1 + cot(γ1 −µ1)

tan γ2 + cot(γ2 +µ2)
.

The other two boundary conditions (3.12)2 and (3.12)4 provide the following equations for
C3 and C4

C3 = 1
mM(ω2)−M(ω1)

{
2(mtanµ2[C2

2 +I 2(ω2)]+tanµ1[C2
2 +I 2(ω1)])+

+(1−ω1)

∫ ω2

ω1

M(t)K(t)dt−mM(ω2)

∫ ω2

0
(1−t)K(t)dt+M(ω1)

∫ ω1

0
(1−t)K(t)dt

}
,

C4 = 1
mM(ω2)−M(ω1)

{
− 1

2(1−ω2)
(tanµ1M(ω2)[C

2
2 +I 2(ω1)]+tanµ2M(ω1)[C

2
2 +I 2(ω2)])−

−M(ω1)M(ω2)

4(1−ω2)

∫ ω1

ω2

(1−t)K(t)dt+ 1
4

[
mM(ω2)

∫ ω1

0
M(t)K(t)dt−M(ω1)

∫ ω2

0
M(t)K(t)dt

]}
,

where M(ω) and m are defined by

M(ω)=2ω1/2eω/2 + (1−ω)I (ω), m= 1−ω1

1−ω2
,

respectively.

3.2.2. Asymmetrical wedge hopper
For the case of an asymmetrical wedge hopper, the application of the boundary conditions
is not as straightforward. Here we must split up the domain into two parts, namely γ1 ≤ θ ≤
π/2 and π/2 ≤ θ ≤ γ2, and treat each region separately. The solutions in each part are then
matched by ensuring that the stress angle ψ and its first derivative ψ ′ are continuous at θ =
π/2.

For the first region, γ1 ≤ θ ≤ π/2, we suppose the relevant solutions are given by (3.6)–
(3.8)2 and (3.10)1–(3.11), with ω= 0 corresponding to θ =π/2 and ω=ω1 corresponding to
θ =γ1. In this case, from (3.6) and (3.12)1, we find

C2 tan γ1 =2ω−1/2
1 eω1/2 −J (ω1)−C1, C2 cot(γ1 −µ1)=J (ω1)+C1, (3.14)

which upon solving for C1 and C2, gives

C1 = 2ω−1/2
1 eω1/2 cot(γ1 −µ1)

tan γ1 + cot(γ1 −µ1)
−J (ω1), C2 = 2ω−1/2

1 eω1/2

tan γ1 + cot(γ1 −µ1)
. (3.15)

The other condition on θ =γ1 (3.12)2 provides the equation

− 1
2 tanµ1[C2

2 + I 2(ω1)]=C4(1−ω1)− 1
4 (1−ω1)

∫ ω1

0
[2t1/2et/2 + (1− t)I (t)]K(t)dt

+ 1
4 [2ω1/2

1 eω1/2 + (1−ω1)I (ω1)]
[∫ ω1

0
(1− t)K(t)dt+C3

]
, (3.16)

which we will come back to.
For the other region in the hopper π/2 ≤ θ ≤ γ2, we suppose that the general solutions

are also given by (3.6)–(3.8)2 and (3.10)1–(3.11), except now we assign different labels to the
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parameter and the constants of integration. Instead of the parameter ω we shall use s, and
instead of the constants C1,C2,C3,C4 we shall use D1,D2,D3,D4, respectively. So for π/2≤
θ ≤γ2 by I (s) we mean J (s)+D1, where J (s) is defined in (3.13). For reference, these solu-
tions are listed by Equations (B.1)–(B.4) in Appendix B. Note that in this region the param-
eter s takes the value s=0 at θ=π/2. We denote the value at θ=γ2 to be s= s2. From (B.1)
and (3.12)3, we find

D2 tan γ2 =2s−1/2
2 es2/2 −J (s2)−D1, D2 cot(γ2 +µ2)=J (s2)+D1, (3.17)

which upon solving for D1 and D2, gives

D1 = 2s−1/2
2 es2/2 cot(γ2 +µ2)

tan γ2 + cot(γ2 +µ2)
−J (s2), D2 = 2s−1/2

2 es2/2

tan γ2 + cot(γ2 +µ2)
. (3.18)

Thus, once ω1 and s2 are known, (3.15) and (3.18) constitute four expressions for the arbi-
trary constants C1,C2,D1 and D2. The condition (3.12)4 on θ =γ2 becomes

1
2 tanµ2[D2

2 + I 2(s2)]=D4(1− s2)− 1
4 (1− s2)

∫ s2

0
[2t1/2et/2 + (1− t)I (t)]K(t)dt+

+ 1
4 [2s1/2

2 es2/2 + (1− s2)I (s2)]
[∫ s2

0
(1− t)K(t)dt+D3

]
. (3.19)

Next, we need to ensure that ψ(θ) and ψ ′(θ) remain continuous throughout the entire
domain. Clearly, these quantities are continuous within the two regions γ1 ≤ θ < π/2 and
π/2<θ ≤γ2, and as such, we need only examine the boundary between the two the solutions
at θ =π/2. From (3.6) and (B.1), we find at θ =π/2 (ω= s=0) that

cot[π/2+ψ0(π/2)]= C1

C2
= D1

D2
, (3.20)

so it must be that

C1 = C2D1

D2
. (3.21)

Further, we want dψ0/dθ to also be continuous at θ =π/2. To do this, we first note that

dψ0

dθ
+1= 4eω+C2

2ω−4ω1/2eω/2 (J (ω)+C1)+ω (J (ω)+C1)
2

C2
2 cosec2(θ0 +ψ0)

, γ1 ≤ θ ≤π/2,

dψ0

dθ
+1= 4es +D2

2s−4s1/2es/2 (J (s)+D1)+ s (J (s)+D1)
2

D2
2cosec2(θ +ψ0)

, π/2≤ θ ≤γ2,

so that at θ =π/2 (ω= s=0) we find

dψ0

dθ

∣∣∣∣
θ=π/2

+1= 4

C2
2 cosec2[π/2+ψ0(π/2)]

= 4

D2
2cosec2[π/2+ψ0(π/2)]

. (3.22)

Clearly, for dψ0/dθ to be continuous, from (3.22) we require C2
2 =D2

2, so that

C2 =−D2, (3.23)

and consequently, from (3.21) we find

C1 =−D1. (3.24)
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Similarly, by taking the limits ω→0 and s→0 in (3.10)1 and (B.3)1 we find

ψ1(π/2)= 4C4 +C1C3

4(C2
1 +C2

2 )
= 4D4 +D1D3

4(D2
1 +D2

2)
,

dψ1

dθ

∣∣∣∣
θ=π/2

=−2(C3 −4C1C4 −C3C
2
1 )

C2(C
2
1 +C2

2 )
=−2(D3 −4D1D4 −D3D

2
1)

D2(D
2
1 +D2

2)
,

so that by making use of (3.23) and (3.24), we have

C3 =−D3, C4 =D4. (3.25)

Hence, from (3.15)2, (3.18)2 and (3.23), we get

ω
−1/2
1 eω1/2 =−

[
tan γ1 + cot(γ1 −µ1)

tan γ2 + cot(γ2 +µ2)

]
s
−1/2
2 es2/2, (3.26)

and from (3.15)1, (3.18)1 and (3.24), we obtain

J (ω1)+J (s2)=2
[

cot(γ2 +µ2)− cot(γ1 −µ1)

tan γ2 + cot(γ2 +µ2)

]
s
−1/2
2 es2/2, (3.27)

and as such, (3.26) and (3.27) constitute as two transcendental equations for ω1 and s2. Fur-
thermore, together with (3.25), the conditions (3.16) and (3.19) provide simultaneous equa-
tions for C3,C4,D3,D4.

3.3. Results

In this subsection, we compare the analytic results obtained from the perturbation scheme
(3.1) with the numerical results for the problem of two-dimensional flow from a hopper with
a wedge-in-wedge insert, as depicted in Figure 2(b). In what follows, we choose γ1 =π/3 and
γ2 =5π/12, noting from [5] that the angle π/2 −γ1 is generally chosen to be twice the angle
π/2 − γ2. Furthermore, we assume the typical values µ1 =µ2 =π/12, so that both the insert
and the hopper are assumed to be made of the same material.

Figures 4, 5 and 6 show, respectively, plots of ψ , F and u/ū versus the angle π/2− θ for
the four values of the angle of internal friction φ=7π/18, π/3, π/4 and π/6. In each case the
solid curves correspond to the leading-order terms (3.6) and (3.8) (which are also the solu-
tions for the limiting case φ=π/2), while the dotted curves correspond to the first two terms
in the perturbation expansion (3.1), with the correction terms given by (3.10). Finally, the
dashed curves denote the full numerical solution of the governing Equations (2.12), (2.13) and
(2.17). Here, the numerical solution to the second-order ordinary differential Equation (2.12)
is solved using a non-linear finite-difference scheme, as described in [36, page 601], while u
is found by applying a fourth-order Runge–Kutta scheme, as given is [36, page 259]. From
Figure 6 we see that the material is flowing the fastest near the middle of the material, while
it slows down towards both the insert and the hopper walls, due to the material being “held
up” on the walls. Further, we note that due to gravity the material is moving faster at the
insert wall than the hopper wall.

From these three figures, it is clear that the perturbation scheme performs extremely well
for high angles of internal friction such as φ= 7π/18 and φ=π/3, which is to be expected.
However, somewhat surprisingly, the scheme still provides an excellent approximation for the
moderately high value φ=π/4, and even provides a reasonable estimate for φ=π/6, which is
by no means a high angle of internal friction. We comment that qualitatively similar results
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Figure 4. Comparison of the numerical, the zeroth-order and the full perturbation solutions for ψ(π/2−θ) for φ=
7π/18, π/3, π/4 and π/6.

are found for different sets of α1, α2, µ1 and µ2, with the general trend being that the per-
turbation scheme works better for steeper hoppers.

For the sake of brevity we do not provide figures for the two-dimensional asymmetrical
wedge hopper. The results are, not surprisingly, qualitatively similar to those found for the
symmetric hopper, and we refer the reader to [21].

4. Highly frictional limit with axial symmetry

This section is dedicated to analysing the axially symmetric problem formulated in Sections
2.3 and 2.4 under the asymptotic limit φ→π/2. It is the analog of Section 3. We extend the
analysis of Thamwattana and Hill [21] to hold for hoppers with cone-in-cone inserts, and we
also determine the associated velocity profile according to the non-dilatant double-shearing
theory.

4.1. Perturbation analysis

We seek solutions to (2.30), (2.31) and (2.36) of the form

�=�0()+ ε�1()+O(ε2),G=G0()+ εG1()+O(ε2),U =U0()+ εU1()+O(ε2),

(4.1)



Perturbation Solution for flow through Symmetrical hoppers 79

0.2

F

Numerical

F0

Numerical

F0

Numerical

F0

Numerical

F0

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.2

F

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.2

F

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.2

F

0.19

0.18

0.17

0.16

0.15

0.14

0.13

0.12

0.25 0.35 0.45 0.55

0.25 0.35 0.45 0.55

0.25 0.35 0.45 0.55

0.25 0.35 0.45 0.55

(a)

(c) (d)

(b)

Figure 5. Comparison of the numerical, the zeroth-order and the full perturbation solutions for F(π/2−θ) for φ=
7π/18, π/3, π/4 and π/6.

where ε=1−β=1− sinφ and ε�1. To leading order, �0 satisfies the equation

� ′′
0 = (1+� ′

0){cot−3 tan�0 −2(1+� ′
0) tan(+�0)}, (4.2)

while G0 and U0 are given by

G0 = cos(+�0)

2(1+� ′
0) cos�0

, U0 = Ū exp
{
−3

∫ 

c

tan�0d
}
. (4.3)

The leading-order terms �0,F0 and U0 represent solutions for the ideal limit φ=π/2, with
(4.2) and (4.3) first solved by Cox and Hill [19]. The solution procedure is analogous to that
described earlier for (3.2) and (3.3), and produces the parametric result

H = tan(+�0)= I (ω)

C2
, ξ = cot= 3ω−1/3eω/3 − I (ω)

C2
, (4.4)

where ω is the parameter, I (ω) the integral defined by

I (ω)=
∫ ω

0
t−1/3et/3 dt+C1, (4.5)
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Figure 6. Comparison of the numerical, the zeroth-order and the full perturbation solutions for u(π/2 − θ)/ū for
φ=7π/18, π/3, π/4 and π/6.

and C1 and C2 constants of integration. Furthermore, G0 and U0 are given parametrically by

G0 = 1
6

ω−2/3e−ω/3[C2
2 + I 2(ω)]

{C2
2 + [3ω−1/3eω/3 − I (ω)]2}1/2

, U0 = Ūω{C2
2 + [3ω−1/3eω/3 − I (ω)]2}3/2

ωc{C2
2 + [3ω−1/3

c eωc/3 − I (ωc)]2}3/2
, (4.6)

where the parameter value ω=ωc corresponds to =c.
The correction term for the stress angle �1 is found to satisfy the linear equation

2� ′′
1 =2� ′

1{−4(1+� ′
0) tan(+�0)+cot θ−3 tan�0}+2�1{� ′′

0 [tan(+�0)+3 tan�0]

2(1+� ′
0)[(1+� ′

0)(3 cos sec�0 sec(+�0)−4)+ tan(+�0)(2 tan�0 − cot)+
+3 tan2�2

0 − cot tan�0 −1]}+� ′′
0 [2− tan�0 tan(+�0)+ tan2�0]+

+2(1+� ′
0)

2[tan(+�0)(3+2 tan2�0)+ tan�0(2+ tan2�0)]+
+(1+� ′

0)[−2(2+tan2�0)(cot−tan�0)−(tan�0+tan(+�0))(1+cot tan�0)+
+ tan�0(5+3 tan2�0)+ tan(+�0)(3+ tan2�0)]+2 tan�0(cot− tan�0)

2,

(4.7)
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where �0 is given by the leading-order solution (4.4). The method for solving this ordinary
differential equation is presented in Appendix C, along with the analysis for determining G1

and U1. The result is that the correction terms are given by

�1 = 1

C2
2 + I 2(ω)

{
C4(1−ω)+ 1

9
[3ω2/3eω/3 + (1−ω)I (ω)]

[∫ ω

0
(1− t)K(t)dt+C3

]

−1
9
(1−ω)

∫ ω

0
[3t2/3et/3 + (1− t)I (t)]K(t)dt

}
,

G1 =−ω
−1/3e−2ω/3G0

18C2
2

{
18C2ω

2/3eω/3[C2
2 + I 2(ω)]

(
d�1

dω
+ �1

3

)
− [C2

2 + I 2(ω)]2

−[3ω−1/3eω/3I (ω)−C2
2 − I 2(ω)][6ω2/3eω/3I (ω)− (1+ω)[C2

2 + I 2(ω)]]

}
,

U1 =− U0

6C2
2

∫ ω

ωc

t−2/3e−t/3[C2
2 + I 2(t)][2C2�1 + I (t)]dt

+ U0

18C2
2

∫ ω

ωc

t−1/3e−2t/3[C2
2 + I 2(t)]2dt, (4.8)

where C3 and C4 are constants of integration, G0 given by (4.6)1, U0 given by (4.6)2, and the
function K given by the expression

K(ω)= C2

ω
+ [2I (ω)−3ω−1/3eω/3]2

C2ω
+ 3
C2
ω−1/3eω/3[3ω−1/3eω/3 − I (ω)]+

+ 1
9C2

ω−4/3e−2ω/3[C2
2 + I 2(ω)][3ω−1/3eω/3I (ω)−C2

2 − I 2(ω)]−

− 1
9C2

ω−1/3e−2ω/3(1+ω)[C2
2 + (3ω−1/3eω/3 − I (ω))2]2. (4.9)

4.2. Application of boundary conditions

From (4.1)1 and (2.38) we see that the appropriate boundary conditions are

�0 =µ1, �1 = 1
2 tanµ1, on =α1,

�0 =−µ2, �1 =− 1
2 tanµ2, on =α2,

(4.10)

which are used to determine the values of the constants C1 and C2 in the leading-order solu-
tion �0 given by (4.4)–(4.5), and the constants C3 and C4 in the correction term �1 in (4.8)1.
The analysis for this procedure is given in Appendix D.

4.3. Results

In order to examine the accuracy and applicability of the full perturbation solution given by
(4.1) of an axially symmetric hopper with a cone-in-cone insert, as depicted in Figure 3, we
choose α1 =π/6 and α2 =π/12 (α1 = 30◦ and α2 = 15◦), noting from [5] that the angle that
the sidewall of the hopper makes with the z-axis is generally assumed to be twice the angle
that the insert makes with the z-axis. Further, we assume µ1 =µ2 =π/12, so that the surface
on both sidewalls possess the same level of friction, and for four values of the angle of inter-
nal friction, namely φ=7π/18, π/3, π/4 and π/6, Figures 7, 8 and 9, respectively, show the
comparison of �(), G() and U()/Ū as determined from a full numerical solution of the
governing Equations (2.30), (2.31) and (2.35), the zeroth-order approximation given by (4.4)
and (4.6), and the full perturbation solution given by (4.1) and (4.8). We note that ψ is a
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Figure 7. Comparison of the numerical, the zeroth-order and the full perturbation solutions for �() for φ =
7π/18, π/3, π/4 and π/6.

decreasing function of π/2− θ in Figure 4, while � is an increasing function  in Figure 7.
This behaviour arises since ψ is measured from the r-axis in the direction of increasing θ (not
π/2−θ ), while � is measured from the R-axis in the direction of increasing . From Figure 9
we again find that near the middle of the material the magnitude of the velocity is greatest,
while due to the material being “held up” on the walls, the velocity decreases towards both
the insert and the hopper walls. Finally, due to gravity the material is again moving faster at
the insert wall than the hopper wall.

From the figures, we see that the full perturbation solution gives an excellent estimate to
the full numerical solution for values of angle of internal friction as low as φ= π/4, while
still providing a reasonable estimate for an angle of internal friction equal to φ= π/6. For
all cases considered, the full perturbation solution gives a much improved estimate than the
zeroth-order solution, and we note that the steeper the sidewall of the hopper, the better the
estimate from the full perturbation solution.

5. Rate of work

In this section we check the necessary physical condition of the rate of work being non-neg-
ative for both the two-dimensional and axially symmetric perturbation solutions presented in
Sections 3 and 4, respectively.
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Figure 8. Comparison of the numerical, the zeroth-order and the full perturbation solutions for G() for φ =
7π/18, π/3, π/4 and π/6.

5.1. Rate of work for the two-dimensional problem

To examine the rate of work for steady quasi-static plane strain gravity flow through a two-
dimensional hopper with a wedge-in-wedge insert, we find from [37, page 482] that for the
solution to be physical, the rate of plastic work is required to remain non-negative, resulting
in the inequality

dW
dt

= tr(σd)≥0, (5.11)

where dW/dt denotes the rate of plastic work, tr denotes the usual trace of a tensor, σ is the
Cauchy stress tensor and d is the strain-rate tensor. In terms of cylindrical polar coordinates
(r, θ) for two-dimensional plane strain flow, as defined by Figure 2(b), the non-zero compo-
nents of σ are σrr , σrθ , σθθ and σzz, while the non-zero components of d are given by

drr = ∂vr

∂r
, drθ = 1

2

[
1
r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

]
, dθθ = 1

r

∂vθ

∂θ
+ vr

r
. (5.12)
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Figure 9. Comparison of the numerical, the zeroth-order and the full perturbation solutions for U()/Ū for φ =
7π/18, π/3, π/4 and π/6.

Thus, from (2.5), (5.11)–(5.12), we require

dW
dt

=σrr ∂vr
∂r

+σrθ
[

1
r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

]
+σθθ

[
1
r

∂vθ

∂θ
+ vr

r

]

=−p
[
∂vr

∂r
+ 1
r

∂vθ

∂θ
+ vr

r

]

+q
{[
∂vr

∂r
− 1
r

∂vθ

∂θ
− vr

r

]
cos 2ψ+

[
∂vθ

∂r
+ 1
r

∂vr

∂θ
− vθ

r

]
sin 2ψ

}
≥0, (5.13)

so that from (2.14)1 and (2.16), the inequality (5.13) becomes

sin 2ψ
du
dθ

−2u cos 2ψ ≥0, (5.14)

noting that q≥0. Further, from (2.17), (5.14) simplifies to give

1+ sinφ cos 2ψ
sinφ+ cos 2ψ

≥0,
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since u≤ 0 (the flow of material is towards the apex of the hopper). We can immediately
see that for the extreme case φ=π/2 the rate of working is always positive. Given we have
restricted ourselves to the range −π ≤ψ ≤π , for φ<π/2 it follows that we must have

|ψ |< π
4

+ 1
2
φ (5.15)

for the rate of energy dissipation to remain non-negative.
For the two-dimensional problem considered in this paper, it is straightforward to test the

rate of working condition (5.15). All that is required is to check the plots of ψ versus θ , like
those presented in Figure 4. In fact, given the boundary conditions (2.20), we know that

ψ(γ1)>−
(
π

4
+ 1

2
φ

)
, ψ(γ2)<

π

4
+ 1

2
φ,

so a sufficient condition for (5.15) to hold is that there are no local minima or maxima over
the range γ1<θ <γ2. We have checked that the condition (5.15) holds true for a variety of
parameter values, as required.

5.2. Rate of work for axially symmetric problem

For axially symmetric flow in terms of spherical polar coordinates (R,,�) as defined by
Figure 3, the non-zero components of σ are denoted by σRR, σR, σ and σ�� while the
non-zero components of the rate-of-deformation tensor d are given by

dRR = ∂VR

∂R
, dR= 1

2

[
1
R

∂VR

∂
+ ∂V

∂R
− V

R

]
, d= 1

R

∂V

∂
+ VR

R
, d��= V

R
cot+ VR

R
.

Thus, from (2.21), (2.26) and (5.11), we require

dW
dt

=σRR ∂VR
∂R

+σR
[

1
R

∂VR

∂
+ ∂V

∂R
− V

R

]
+σ

[
1
R

∂V

∂
+ VR

R

]
+σ��

[
V

R
cot+ VR

R

]

=−P
{
∂VR

∂R
+ 1
R

∂V

∂
+ 2VR

R
+ V

R
cot

}
+Q

{[
∂VR

∂R
− 1
R

∂V

∂
− VR

R

]
cos2� +

+
[

1
R

∂VR

∂
+ ∂V

∂R
− V

R

]
sin2�+ V

R
cot+ VR

R

}
≥0,

which, after substituting (2.32)1 and (2.34), becomes

sin 2�
dU
d

+U(1−3 cos 2�)≥0, (5.16)

noting that Q≥0. Further, from (2.35), (5.16) simplifies to give the rate of work inequality

3− sinφ+ (3 sinφ−1) cos 2�
sinφ+ cos 2�

≥0. (5.17)

We again note that for the special case of sinφ=1, the rate of work inequality (5.17) is always
satisfied. For all other values of φ, we must have

|�|< π
4

+ 1
2
φ. (5.18)

This condition has been checked for a variety of parameter values for the problem considered
in Section 4, and was found to hold true in each case. We conclude that the choice of hoop
stress (2.26) is not inconsistent with the important requirement (5.11).
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We mention that if the alternate condition (2.27) for the hoop stress was chosen, then
(5.17) would be replaced with the similar condition

3+ sinφ+ (3 sinφ+1) cos 2�
sinφ+ cos 2�

≥0.

However, this inequality also implies (5.18), so the necessary condition for non-negative
energy dissipation would remain unchanged.

6. Conclusions

We have considered the problem of gravity flow of granular materials both in symmetrical
hoppers with inserts and asymmetrical hoppers. These inserts are primarily used to influ-
ence the flow of the material to ensure that mass-flow occurs, rather than funnel-flow. For
flow near the outlet of the hopper, we have applied the radial field stress similarity solutions,
which give rise to highly non-linear coupled ordinary differential equations, while the flow
fields have been determined using the non-dilatant double-shearing theory. We have analyti-
cally calculated the first two terms of a perturbation scheme valid for 1− sinφ�1, for both
the stress and velocity fields, which are then applied to the problems considered. The pertur-
bation results are in excellent agreement with a full numerical solution for large values of φ,
as expected, and also gives reasonable predictions for values of φ as low as 45◦.

We note here that the dynamic equations for Spencer’s double-shearing theory are known
to be linearly ill-posed (as are many other plasticity-type theories for granular flow), in the
sense that small perturbations to existing solutions may grow exponentially in time (see [38],
for example). This property puts some doubt on whether the steady solutions examined in
this study actually describe real granular flows, although, as mentioned in the Introduction,
there is experimental evidence (see [30], for example) that suggests the double-shearing theory
is indeed appropriate for flows in the neighbourhood of a hopper outlet. This topic is still a
matter for debate, and we have not pursued it here.

One of the goals of this study was to ascertain whether or not the perturbation solutions
for highly frictional granular materials could be utilized for asymmetrical hoppers and sym-
metrical hoppers with inserts, in order to calculate the granular flow patterns near the outlet
of the hopper. This has been achieved, and with the use of the non-dilatant double-shearing
theory we have confirmed that the solutions presented satisfy the physically necessary require-
ment that the rate of working be non-negative. At present it is not precisely clear under what
conditions an insert will convert a funnel-flow hopper into a mass-flow hopper (a simple idea
involves the use of an envelope curve as discussed in Subsection 2.3) page 12, but with any
future developments the results presented here may prove useful.

Appendix A. Correction terms in two-dimensions

Here we consider the ordinary differential Equation (3.9). With use of the change of variables
(3.4), we can transform this equation into

(1+h2)(h+ ξ)d2ψ1

dξ2
+2[1+h2 +2h(h+ ξ)h′]

dψ1

dξ
+2

[
(h+ ξ)h′2 − 1+h2

h+ ξ h
′
]
ψ1

=h′2
[
(1+ ξ2)2

(h+ ξ)2 − ξ(h+ ξ)
]

+ h(1+h2)

h+ ξ h′,
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which, after substituting the parametric solutions for h and ξ (3.6), can be transformed into

2ω[C2
2 + I 2(ω)]

d2ψ1

dω2
+{

8ω1/2eω/2I (ω)+ (1−ω)[C2
2 + I 2(ω)]

} dψ1

dω
+{4eω + I 2(ω)+C2

2 }ψ1

=− 1
2C2

I (ω)[C2
2 + I 2(ω)]− 2

C2
eω[2ω−1/2eω/2 − I (ω)]+ 1

4C2
ω3/2e−ω/2[C2

2 + (2ω−1/2eω/2 − I (ω))2]2,

where ω is the parameter. Progress can be made by noting the left-hand side of this equation
is simply

2ω
d2�

dω2
+ (1−ω)d�

dω
+�,

where the variable � is defined by �= [C2
2 + I 2(ω)]ψ1, so that we can integrate twice to find

�=C4(1−ω)+ 1
4 [2ω1/2eω/2 + (1−ω)I (ω)]

[∫ ω

0
(1− t)K(t)dt+C3

]
−

− 1
4 (1−ω)

∫ ω

0
[2t1/2et/2 + (1− t)I (t)]K(t)dt,

where C3 and C4 are constants and K(t) is given by (3.11).
Now, by substituting the perturbation expansions (3.1)1 and (3.1)2 in (2.13), we find that

F1 = F0

2(1+ψ ′
0)

{−2ψ ′
1 +2ψ1(1+ψ ′

0)[tanψ0 + cot(θ +ψ0)]+
+(1+ψ ′

0) tanψ0[tanψ0 − cot(θ +ψ0)]+ sec2ψ0},
where F0 is given by (3.3)1. After making the transformations in (3.4), we arrive at the expres-
sion

F1 = F0

2(h+ ξ)2
{

2
(1+h2)(h+ ξ)2

h′
dψ1

dξ
+2(1+h2)(h+ ξ)ψ1 +

+(1−hξ)(1−2hξ −h2)− (1+h2)2

h′

}
,

which can be simplified further to (3.10)2 with use of the parametric solutions (3.6).
Finally, from (2.18), (3.1)1, (3.1)3, (3.4) and (3.6) we find that u1 is

u1 =u0

∫ θc

θ

(2ψ1 + tanψ0) sec2ψ0dθ

= u0

8C2
2

{
e−ωc [C2

2 + I 2(ωc)]2 − e−ω[C2
2 + I 2(ω)]2 +

+2
∫ ω

ωc

t−1/2e−t/2[C2
2 + I 2(t)][2C2ψ1 + I (t)]dt

}
,

where u0 is the leading-order solution (3.8)2, and ψ1 is the correction term (3.10)1. This
expression may be simplified to give (3.10)3.

Appendix B. General solution for asymmetrical wedge hopper

For an asymmetrical wedge hopper, the general solutions for the leading-order and correction
terms in the region π/2≤ θ ≤γ2 are given here. The leading-order solution for ψ0 is

cot(θ +ψ0)= I (ω)

D2
, tan θ = 2s−1/2es/2 − I (s)

D2
, (B.1)
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where s acts as a parameter, I (s)= J (s)+D1, and D1 and D2 are arbitrary constants. The
solutions for F0 and u0 are given parametrically by

F0 = 1
4

s−1/2e−s/2[D2
2 + I 2(s)]

{
D2

2 + [2s−1/2es/2 − I (s)]2}1/2
, u0 = ū s

{
D2

2 + [2s−1/2es/2 − I (s)]2}

sc

{
D2

2 + [2s−1/2
c esc/2 − I (sc)]2

} , (B.2)

where the parameter value s= sc corresponds to θ = θc. The correction terms are given by

ψ1 = 1

D2
2 +I 2(s)

{
D4(1−s)+ 1

4
[2s1/2es/2 +(1−s)I (s)]

[∫ s

0
(1−t)K(t)dt+D3

]
−

−1
4
(1−s)

∫ s

0
[2t1/2et/2 +(1−t)I (t)]K(t)dt

}
,

F1 =F0
s1/2e−s/2

8D2
2

[D2
2 +I 2(s)]

{
8D2

dψ1

ds
+4D2ψ1 +(1+s)s−1/2e−s/2[D2

2 +I 2(s)] (B.3)

−6s−1/2es/2I (s)+ 8s−1esI 2(s)

D2
2 +I 2(s)

}
,

u1 = u0

8D2
2

{
e−sc [D2

2 +I 2(sc)]2 −e−s [D2
2 +I 2(s)]2 +2

∫ s

sc

t−1/2e−t/2[D2
2 +I 2(t)][2D2ψ1 +I (t)]dt

}
,

where D3 and D4 are constants of integration, F0 given by (B.2)1, u0 given by (B.2)2, and the
function K given by the expression

K(s)=− 1
2D2

s−1/2e−s/2I (s)[D2
2 + I 2(s)]2 − 2

D2
s−1/2es/2[2s−1/2es/2 − I (s)]

+ 1
4D2

se−s [D2
2 + (2s−1/2es/2 − I (s))2]2.

(B.4)

These expressions are equivalent to (3.6)–(3.8)2 and (3.10)1–(3.11), except we have assigned
different labels to the parameter and the constants of integration.

Appendix C. Correction terms in axial symmetry

Here we consider the ordinary differential equation (4.7). With use of the change of variables
(4.4), we can transform this equation into

(1+H 2)(ξ +H)d2�1

dξ2
+ [4H(ξ +H)H ′ +3(1+H 2)]

d�1

dξ
+

[
2(ξ +H)H ′2 − 3(1+H 2)

ξ +H H ′
]
�1

=
[
ξ(ξ +H)− (1+ ξ2)2

(ξ +H)2
]
H ′2 −

[
1+ (H − ξ)2 − (1+ ξ2)2

(ξ +H)2
]
H ′ + (1+H 2)(Hξ −1)

(ξ +H)2 ,

which, after substituting the parametric solutions for H and ξ (4.4), can be transformed into

3ω[C2
2+I 2(ω)]

d2�1

dω2
+{12ω2/3eω/3I (ω)+(1−ω)[C2

2+I 2(ω)]}d�1

dω
+{6ω1/3e2ω/3+C2

2+I 2(ω)}�1

=C2ω
−1/3eω/3+ 3

C2
ω1/3e2ω/3[3ω−1/3eω/3−I (ω)]− 1

9C2
ω1/3e−ω/3(1+ω)[C2

2+(3ω−1/3eω/3−I (ω))2]2+

+ 1
C2
ω−1/3eω/3[2I (ω)−3ω−1/3eω/3]2+ 1

9C2
ω−2/3e−ω/3[C2

2+I 2(ω)][3ω−1/3eω/3I (ω)−C2
2−I 2(ω)],
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where ω is the parameter. Progress can be made by noting that the left-hand side of this equa-
tion is simply

3ω
d2�

dω2
+ (1−ω)d�

dω
+�,

where the variable � is defined to be �= [C2
2 + I 2(ω)]�1, so that we can integrate twice to

find

�=C4(1−ω)+ 1
9

[3ω2/3eω/3 + (1−ω)I (ω)]
[∫ ω

0
(1− t)K(t)dt+C3

]

−1
9
(1−ω)

∫ ω

0
[3t2/3et/3 + (1− t)I (t)]K(t)dt,

where C3 and C4 are constants and K(t) is given by (4.9).
Now, by substituting the perturbation expansions (4.1)1 and (4.1)2 in (2.31), we find that

G1 =−G0

2

{
2� ′

1 + cot tan�0 −2 tan2�0 −1

1+� ′
0

+2�1[tan(+�0)− tan�0]

− tan�0[tan(+�0)+ tan�0]

}
,

where G0 is given by (4.3)1, and can be simplified to (4.8)2 with the use of the parametric
solutions (4.4).

Finally, from (2.36), (4.1)1, (4.1)3 and (4.4), we find that U1 is

U1 =−3U0

2

∫ 

c

(2�1 +tan�0)sec2�0 d,

=− U0

6C2
2

∫ ω

ωc

t−2/3e−t/3[C2
2 +I 2(t)][2C2�1 +I (t)]dt+ U0

18C2
2

∫ ω

ωc

t−1/3e−2t/3[C2
2 +I 2(t)]2dt,

where U0 is the leading-order solution (4.6)2, and �1 is the correction term (4.8)1. This
expression may be simplified to give (4.8)3.

Appendix D. Constants of integration for axial symmetry

In the following, we will use the integral

J (ω)=
∫ ω

0
t−1/3et/3dt, (D.1)

so that from (4.5) we have I (ω)=J (ω)+C1. Now, for the case of a cone-in-cone insert (see
Figure 3) we need only consider the domain α2 ≤≤α1, since the flow is symmetrical around
=0. We suppose that the parameter ω in (4.4) takes the values ω=ω1 and ω=ω2 at =1

and =2, respectively. By applying the boundary conditions (4.10)1 and (4.10)3, we find the
constants C1 and C2 are given in terms of these parameter values by

C1 =C2 tan(α1 +µ1)−J (ω1), C2 = 3ω−1/3
2 eω2/3 −J (ω2)+J (ω1)

cotα2 + tan(α1 +µ1)
, (D.2)

while the values of ω1 and ω2 are determined by the pair of transcendental equations

1
3
ω

1/3
2 e−ω2/3[J (ω1)−J (ω2)]= tan(α1 +µ1)− tan(α2 −µ2)

cotα2 + tan(α2 −µ2)
,

(
ω2

ω1

)1/3

e(ω1−ω2)/3 = cotα1 + tan(α1 +µ1)

cotα2 + tan(α2 −µ2)
.
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The other two boundary conditions (4.10)2 and (4.10)4 provide the following equations for
C3 and C4

C3 = 1
M(ω1)−mM(ω2)

{
9
2
(m tanµ2[C2

2 + I 2(ω2)]+ tanµ1[C2
2 + I 2(ω1)])+

+(1−ω1)

∫ ω1

ω2

M(t)K(t)dt+mM(ω2)

∫ ω2

0
(1− t)K(t)dt−M(ω1)

∫ ω1

0
(1− t)K(t)dt

}
,

C4 = 1
M(ω1)−mM(ω2)

{
− 1

2(1−ω2)
(tanµ1M(ω2)[C

2
2+I 2(ω1)]+tanµ2M(ω1)[C

2
2+I 2(ω2)])+

+M(ω1)M(ω2)

9(1−ω2)

∫ ω1

ω2

(1−t)K(t)dt− 1
9

[
mM(ω2)

∫ ω1

0
M(t)K(t)dt−M(ω1)

∫ ω2

0
M(t)K(t)dt

]}
,

where M(ω) and m are defined by

M(ω)=3ω2/3eω/3 + (1−ω)I (ω), m= 1−ω1

1−ω2
,

respectively.
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